Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 150
1.
Hum Genet ; 143(3): 455-469, 2024 Mar.
Article En | MEDLINE | ID: mdl-38526744

Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.


GTPase-Activating Proteins , Heterozygote , Microcephaly , Mutation, Missense , Neurodevelopmental Disorders , Humans , Microcephaly/genetics , Female , Male , Child, Preschool , GTPase-Activating Proteins/genetics , Child , Neurodevelopmental Disorders/genetics , Loss of Function Mutation , Animals , Developmental Disabilities/genetics , Mice , Infant , Phenotype , Adolescent
2.
Genet Med ; 26(5): 101087, 2024 May.
Article En | MEDLINE | ID: mdl-38288683

PURPOSE: Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS: Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS: De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION: De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.


Autism Spectrum Disorder , Epilepsy , Intellectual Disability , Interneurons , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Intellectual Disability/genetics , Intellectual Disability/pathology , Epilepsy/genetics , Epilepsy/pathology , Male , Female , Interneurons/metabolism , Interneurons/pathology , Child , Child, Preschool , Transcription Factors/genetics , Transcription Factors/metabolism , Phenotype , Mutation, Missense/genetics , Heterozygote , Adolescent , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology
3.
Crit Care Med ; 52(3): e142-e151, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38193770

OBJECTIVES: An association between physical inactivity and worse outcome during infectious disease has been reported. The effect of moderate exercise preconditioning on the immune response during an acute pneumonia in a murine model was evaluated. SETTING: Laboratory experiments. SUBJECTS: C57BL6/j male mice. INTERVENTIONS: Six-week-old C57BL/6J mice were divided in two groups: an exercise group and a control group. In the exercise group, a moderate, progressive, and standardized physical exercise was applied for 8 weeks. It consisted in a daily treadmill training lasting 60 minutes and with an intensity of 65% of the maximal theoretical oxygen uptake. Usual housing recommendation were applied in the control group during the same period. After 8 weeks, pneumonia was induced in both groups by intratracheal instillation of a fixed concentration of a Klebsiella pneumoniae (5 × 103 colony-forming unit) solution. MEASUREMENTS AND MAIN RESULTS: Mice preconditioned by physical exercise had a less sever onset of pneumonia as shown by a significant decrease of the Mouse Clinical Assessment Severity Score and had a significantly lower mortality compared with the control group (27% vs. 83%; p = 0.019). In the exercise group, we observed a significantly earlier but transient recruitment of inflammatory immune cells with a significant increase of neutrophils, CD4+ cells and interstitial macrophages counts compared with control group. Lung tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, and IL-10 were significantly decreased at 48 hours after pneumonia induction in the exercise group compared with the control group. CONCLUSIONS: In our model, preconditioning by moderate physical exercise improves outcome by reducing the severity of acute pneumonia with an increased but transient activation of the innate immune response.


Pneumonia , Mice , Male , Humans , Animals , Disease Models, Animal , Mice, Inbred C57BL , Lung/pathology , Tumor Necrosis Factor-alpha
4.
Exp Dermatol ; 32(9): 1563-1568, 2023 09.
Article En | MEDLINE | ID: mdl-37395585

During the course of acute ZIKV infection, pruritus is a cardinal symptom widely documented in the literature. Its frequent association with dysesthesia and several dysautonomic manifestations, suggests a pathophysiological mechanism involving the peripheral nervous system. The aim of this study was to develop a functional human model to potentially able to be infected by ZIKV: by demonstrating the functionality on a new human model of co-culture of keratinocyte and sensory neuron derived from induced pluripotent stem cells using a classical method of capsaicin induction and SP release, and verify the presence of ZIKV entry receptor in these cells. Depending of cellular type, receptors of the TAMs family, TIMs (TIM1, TIM3 and TIM4) and DC-SIGN and RIG1 were present/detected. The cells incubations with capsaicin resulted in an increase of the substance P. Hence, this study demonstrated the possibility to obtain co-cultures of human keratinocytes and human sensory neurons that release substance P in the same way than previously published in animal models which can be used as a model of neurogenic skin inflammation. The demonstration of the expression of ZIKV entry receptors in these cells allows to considerate the potent possibility that ZIKV is able to infect cells.


Zika Virus Infection , Zika Virus , Animals , Humans , Zika Virus/metabolism , Zika Virus Infection/metabolism , Coculture Techniques , Substance P/metabolism , Virus Internalization , Capsaicin , Keratinocytes/metabolism , Sensory Receptor Cells
5.
Cancers (Basel) ; 15(10)2023 May 16.
Article En | MEDLINE | ID: mdl-37345105

We studied the pathologists' agreements in quantifying PD-L1 expression through the tumor proportion score (TPS) and the combined positive score (CPS) using single PD-L1 immunohistochemistry (S-IHC) and double immunohistochemistry (D-IHC) combining PD-L1 staining and tumor cell markers. S-IHC and D-IHC were applied to 15 cancer samples to generate 60 digital IHC slides (30 whole slides images and 30 regions of interest of 1 mm2) for PD-L1 expression quantification using both TPS and CPS, twice by four pathologists. Agreements were estimated calculating intraclass correlation coefficients (ICC). Both S-IHC and D-IHC slides analyses resulted in excellent (for TPS, ICC > 0.9) to good (for CPS, ICC > 0.75) inter- and intra-pathologist agreements with slightly higher ICC with D-IHC than with S-IHC. S-IHC resulted in higher TPS and CPS than D-IHC (+5.6 and +6.1 mean differences, respectively). High reproducibility in the quantification of PD-L1 expression is attainable using S-IHC and D-IHC.

6.
J Clin Pathol ; 2023 Apr 25.
Article En | MEDLINE | ID: mdl-37185257

AIMS: We aimed to evaluate the performances of the Idylla GeneFusion Assay (IGFA) designed to detect, in a single, rapid and fully automated assay, ALK, ROS1, RET, NTRK1, NTRK2 and NTRK3 gene fusions and MET exon 14 skipping in cancer samples. METHODS: Based on a set of tumours enriched in cases with gene fusions, we applied the IGFA to tumour areas of various sizes and tumour cell contents. IGFA results were compared with those obtained with other methods (immunohistochemistry, fluorescent in situ hybridisation, DNA and RNA next-generation sequencing). RESULTS: We selected 68 tumours: 49 cases with known gene fusions (8 ALK, 8 ROS1, 5 RET, 7 NTRK1, 3 NTRK2 and 6 NTRK3 ones) or MET exon 14 skipping mutations (12 cases) and 19 cases with no fusion and no MET mutation. We performed 128 IGFA tests on distinct tissue areas. The global sensitivity and specificity of the IGFA were, respectively, 62.82% and 99.2% with variations between molecular targets and tissue areas. Of note, 72.5% sensitivity and 98.79% specificity were obtained in 37 tissue areas fulfilling the manufacturer's recommendations (ie, at least 10% of tumour cells in at least 20 mm² of tissue area). The rate of non-conclusive results was higher in small samples with low percentages of tumour cells. CONCLUSIONS: The IGFA could contribute to the rapid detection of targetable gene fusions and mutations, especially in context of rapidly growing cancers requiring urgent therapeutic choices.

7.
Life (Basel) ; 13(2)2023 Feb 09.
Article En | MEDLINE | ID: mdl-36836836

(1) Background: Placental histological lesions reported in relation with SARS-CoV-2 infection are various, with potential consequences such as fetal growth retardation, prematurity or stillbirth/neonatal death. We report here on a placental pathological association which could be specific for SARS-CoV-2 infection and associated with poor fetal outcome; (2) Methods: We collected all the placental pathological examinations performed in Brest University Hospital (France) since the beginning of COVID-19 pandemic with a known maternal SARS-CoV-2 infection and a poor pregnancy outcome. In these cases, we described the pathological lesions and we searched for these lesions in a large series of placentas collected and examined in the same institution before the SARS-CoV-2 pandemic; (3) Results: Three cases with severe fetal outcome (tardive abortion, prematurity, neonatal death), from the first to the third trimesters of pregnancy, were included. The three cases showed features of massive and acute "placentitis triad" consisting in massive perivillous fibrin deposition, sub-acute intervillositis and trophoblastic necrosis. This association was not encountered in any of 8857 placentas analyzed during the period between 2002 and 2012 in our institution; (4) Conclusions: The "placentitis triad" appears to be specific for SARS-CoV-2 infection and, in case of massive and acute presentation, could result in poor fetal outcome.

8.
Joint Bone Spine ; 90(1): 105459, 2023 01.
Article En | MEDLINE | ID: mdl-36108904

OBJECTIVE: To determine whether repeated minor salivary gland biopsy (MSGB) has a clinical diagnostic utility in patients with suspicion of Sjögren's syndrome (SS). METHODS: Clinical, biological, pathological data and physician's diagnosis after each MSGB from patients with suspected primary or secondary SS who had benefited from 2 MSGB at Brest University Hospital between January 1st, 1990 and January 14th, 2015, were retrospectively collected. We compared the characteristics of patients with and without first positive MSGB, concordance between the MSGB, and analyzed the modifications of diagnosis after the second MSGB. RESULTS: Ninety-three patients were included, first MSGB was positive for 23 and negative for 70. Patients with first positive MSGB had more often renal involvement (P<0.05) and hypergammaglobulinemia (P=0.01), anti-SSA antibodies (P<0.05) and positive second biopsy with focus score ≥ 1 or Chisholm>2 (P<0.01). The mean time between the 2 MSGB was 5.7±4.3 years. The concordance between the results of the 2 biopsies was low (κ = 0.34). MSGB influenced diagnostic's change in 10 cases where the second MSGB was always guided by new specific clinical manifestations. CONCLUSION: We observed a low concordance between 2 MSGB in patients with suspected pSS in our study. Despite this variability, performing a second MSGB changed the initial diagnosis in only a minority of the patients and was particularly useful when clinical manifestations had deeply evolved.


Sjogren's Syndrome , Humans , Salivary Glands, Minor/pathology , Retrospective Studies , Biopsy
9.
J Inherit Metab Dis ; 45(5): 996-1012, 2022 09.
Article En | MEDLINE | ID: mdl-35621276

Mitochondrial complex V plays an important role in oxidative phosphorylation by catalyzing the generation of ATP. Most complex V subunits are nuclear encoded and not yet associated with recognized Mendelian disorders. Using exome sequencing, we identified a rare homozygous splice variant (c.87+3A>G) in ATP5PO, the complex V subunit which encodes the oligomycin sensitivity conferring protein, in three individuals from two unrelated families, with clinical suspicion of a mitochondrial disorder. These individuals had a similar, severe infantile and often lethal multi-systemic disorder that included hypotonia, developmental delay, hypertrophic cardiomyopathy, progressive epileptic encephalopathy, progressive cerebral atrophy, and white matter abnormalities on brain MRI consistent with Leigh syndrome. cDNA studies showed a predominant shortened transcript with skipping of exon 2 and low levels of the normal full-length transcript. Fibroblasts from the affected individuals demonstrated decreased ATP5PO protein, defective assembly of complex V with markedly reduced amounts of peripheral stalk proteins, and complex V hydrolytic activity. Further, expression of human ATP5PO cDNA without exon 2 (hATP5PO-∆ex2) in yeast cells deleted for yATP5 (ATP5PO homolog) was unable to rescue growth on media which requires oxidative phosphorylation when compared to the wild type construct (hATP5PO-WT), indicating that exon 2 deletion leads to a non-functional protein. Collectively, our findings support the pathogenicity of the ATP5PO c.87+3A>G variant, which significantly reduces but does not eliminate complex V activity. These data along with the recent report of an affected individual with ATP5PO variants, add to the evidence that rare biallelic variants in ATP5PO result in defective complex V assembly, function and are associated with Leigh syndrome.


Brain Diseases , Leigh Disease , Mitochondrial Proton-Translocating ATPases , Brain Diseases/metabolism , DNA, Complementary/metabolism , Humans , Leigh Disease/genetics , Leigh Disease/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Mutation , Proteins/metabolism
10.
Acta Neuropathol Commun ; 10(1): 74, 2022 05 14.
Article En | MEDLINE | ID: mdl-35568959

Prenatal alcohol exposure is a major cause of neurobehavioral disabilities. MRI studies in humans have shown that alcohol is associated with white matter microstructural anomalies but these studies focused on myelin abnormalities only after birth. Only one of these studies evaluated oligodendrocyte lineage, but only for a short period during human foetal life. As data are lacking in humans and alcohol is known to impair oligodendrocyte differentiation in rodents, the present study aimed to compare by immunohistochemistry the oligodendrocyte precursor cells expressing PDGFR-α and immature premyelinating/mature oligodendrocytes expressing Olig2 in the ganglionic eminences and the frontal cortex of 14 human foetuses exposed to alcohol from 15 to 37 weeks' gestation with age-matched controls. The human brains used in this study were obtained at the time of foetal autopsies for medical termination of pregnancy, in utero or post-natal early death. Before birth, PDGFR-α expression was strongly increased in the ganglionic eminences and the cortex of all foetuses exposed to alcohol except at the earliest stage. No massive generation of Olig2 immunoreactive cells was identified in the ganglionic eminences until the end of pregnancy and the density of Olig2-positive cells within the cortex was consistently lower in foetuses exposed to alcohol than in controls. These antenatal data from humans provides further evidence of major oligodendrocyte lineage impairment at specific and key stages of brain development upon prenatal alcohol exposure including defective or delayed generation and maturation of oligodendrocyte precursors.


Prenatal Exposure Delayed Effects , Cell Differentiation , Cell Lineage , Ethanol/toxicity , Female , Fetus/metabolism , Humans , Myelin Sheath/metabolism , Oligodendrocyte Transcription Factor 2/metabolism , Oligodendroglia/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/metabolism
11.
Nat Commun ; 13(1): 2306, 2022 04 28.
Article En | MEDLINE | ID: mdl-35484142

Missense variants in RNA-binding proteins (RBPs) underlie a spectrum of disease phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Here, we present ten independent families with a severe, progressive muscular dystrophy, reminiscent of oculopharyngeal muscular dystrophy (OPMD) but of much earlier onset, caused by heterozygous frameshift variants in the RBP hnRNPA2/B1. All disease-causing frameshift mutations abolish the native stop codon and extend the reading frame, creating novel transcripts that escape nonsense-mediated decay and are translated to produce hnRNPA2/B1 protein with the same neomorphic C-terminal sequence. In contrast to previously reported disease-causing missense variants in HNRNPA2B1, these frameshift variants do not increase the propensity of hnRNPA2 protein to fibrillize. Rather, the frameshift variants have reduced affinity for the nuclear import receptor karyopherin ß2, resulting in cytoplasmic accumulation of hnRNPA2 protein in cells and in animal models that recapitulate the human pathology. Thus, we expand the phenotypes associated with HNRNPA2B1 to include an early-onset form of OPMD caused by frameshift variants that alter its nucleocytoplasmic transport dynamics.


Amyotrophic Lateral Sclerosis , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Muscular Dystrophy, Oculopharyngeal , Amyotrophic Lateral Sclerosis/genetics , Animals , Frameshift Mutation , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Heterozygote , Humans , Muscular Dystrophy, Oculopharyngeal/genetics
12.
HGG Adv ; 3(2): 100097, 2022 Apr 14.
Article En | MEDLINE | ID: mdl-35321494

Mitochondrial disorders are clinically and genetically heterogeneous, with variants in mitochondrial or nuclear genes leading to varied clinical phenotypes. TAMM41 encodes a mitochondrial protein with cytidine diphosphate-diacylglycerol synthase activity: an essential early step in the biosynthesis of phosphatidylglycerol and cardiolipin. Cardiolipin is a mitochondria-specific phospholipid that is important for many mitochondrial processes. We report three unrelated individuals with mitochondrial disease that share clinical features, including lethargy at birth, hypotonia, developmental delay, myopathy, and ptosis. Whole exome and genome sequencing identified compound heterozygous variants in TAMM41 in each proband. Western blot analysis in fibroblasts showed a mild oxidative phosphorylation (OXPHOS) defect in only one of the three affected individuals. In skeletal muscle samples, however, there was severe loss of subunits of complexes I-IV and a decrease in fully assembled OXPHOS complexes I-V in two subjects as well as decreased TAMM41 protein levels. Similar to the tissue-specific observations on OXPHOS, cardiolipin levels were unchanged in subject fibroblasts but significantly decreased in the skeletal muscle of affected individuals. To assess the functional impact of the TAMM41 missense variants, the equivalent mutations were modeled in yeast. All three mutants failed to rescue the growth defect of the Δtam41 strains on non-fermentable (respiratory) medium compared with wild-type TAM41, confirming the pathogenicity of the variants. We establish that TAMM41 is an additional gene involved in mitochondrial phospholipid biosynthesis and modification and that its deficiency results in a mitochondrial disorder, though unlike families with pathogenic AGK (Sengers syndrome) and TAFAZZIN (Barth syndrome) variants, there was no evidence of cardiomyopathy.

14.
Pathology ; 54(1): 55-62, 2022 Feb.
Article En | MEDLINE | ID: mdl-34518039

Glioblastomas are frequent malignant brain tumours with a very poor prognosis and a need for new and efficient therapeutic strategies. With the approval of anti-TRK targeted therapies to treat patients with advanced NTRK-rearranged cancers, independent of the type of cancer, potential new treatment opportunities are available for the 0.5-5% of patients with NTRK-rearranged glioblastomas. Identification of these rare NTRK-rearranged glioblastomas requires efficient diagnostic tools and strategies which are evaluated in this study. We compared the results of NTRK1, NTRK2 and NTRK3 fluorescent in situ hybridisation (FISH) assays to those of pan-TRK immunohistochemistry (IHC) using two EPR17341 and A7H6R clones in a set of 196 patients with glioblastomas. Cases with at least 15% of positive nuclei using FISH analyses were further analysed using RNA sequencing. Above the 15% threshold, seven positive glioblastomas (3.57%) were identified by FISH assays (4 NTRK1, 3 NTRK2, no NTRK3). NTRK rearrangements were confirmed by RNA sequencing analyses in four cases [1 LMNA-NTRK1, 1 PRKAR2A-NTRK2, 1 SPECC1L-NTRK2 and 1 NACC2-NTRK2 fusions, i.e., 4/196 (2%) of NTRK-rearranged tumours in our series] but no rearrangement was detected in three samples with less than 30% of positive tumour nuclei as determined by NTRK1 FISH. Pan-TRK immunostaining showed major discrepancies when using either the EPR17341 or the A7H6R clones for the following criteria: main intensity, H-Score based scoring and homogeneity/heterogeneity of staining (Kappa values <0.2). This led to defining adequate criteria to identify NTRK-rearranged gliomas exhibiting strong and diffuse immunostaining contrasting to the variable and heterogeneous staining in non-NTRK-rearranged gliomas (p<0.0001). As assessing NTRK rearrangements has become crucial for glioma therapy, FISH seems to be a valuable tool to maximise access to TRK testing in patients with glioblastomas. In contrast to other cancers, pan-TRK IHC appears of limited interest in this field because there is no 'on/off' IHC positivity criterion to distinguish between NTRK-rearranged and non-NTRK-rearranged gliomas. RNA sequencing analyses are necessary in FISH positive cases with less than 30% positive nuclei, to avoid false positivity when scoring is close to the detection threshold.


Glioblastoma , Immunohistochemistry , In Situ Hybridization, Fluorescence , Receptor Protein-Tyrosine Kinases , Sequence Analysis, RNA , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Female , Gene Rearrangement , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/therapy , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Molecular Targeted Therapy , Oncogene Proteins, Fusion/analysis , Oncogene Proteins, Fusion/genetics , Receptor Protein-Tyrosine Kinases/analysis , Receptor Protein-Tyrosine Kinases/genetics , Receptor, trkA/analysis , Receptor, trkA/genetics , Receptor, trkC/analysis , Receptor, trkC/genetics , Young Adult
15.
Front Med (Lausanne) ; 9: 1051967, 2022.
Article En | MEDLINE | ID: mdl-36714112

Introduction: Small fiber neuropathies (SFNs) are disorders of skin nerve endings inducing pruritus, burning pain, numbness, and paresthesia. The aims of this study were to search for putative etiologies of SFN and their occurrence in a cohort of patients and to compare patients with SFN to a group of patients without SFN to highlight potential factors associated with SFN. Methods: This study was observational, retrospective, and monocentric. All patients with symptoms of SFN who underwent skin biopsies with intraepidermal nerve density counts were included. Patients with a count lower than 5 percentiles were considered to be in the SFN group. Other patients were considered to be the control group. Results: A total of 162 patients with SFN and 161 controls were included. No cause was identified for 108 patients (61.7%). The established causes were autoimmune diseases (9.1%), diabetes or glucose intolerance (8%), medication (4%), liver disease (3.4%), and monoclonal gammopathy of undetermined significance (2.9%). Current or former smokers were more numerous in the SFN group (26.5%) than in the control group (16.1%), while vitamin D amounts were significantly lower in the SFN group than in the control group. Discussion: Hence, tobacco smoking and vitamin D deficiency might be new putative causes of SFN.

16.
Acta Neuropathol Commun ; 9(1): 155, 2021 09 17.
Article En | MEDLINE | ID: mdl-34535181

The ryanodine receptor RyR1 is the main sarcoplasmic reticulum Ca2+ channel in skeletal muscle and acts as a connecting link between electrical stimulation and Ca2+-dependent muscle contraction. Abnormal RyR1 activity compromises normal muscle function and results in various human disorders including malignant hyperthermia, central core disease, and centronuclear myopathy. However, RYR1 is one of the largest genes of the human genome and accumulates numerous missense variants of uncertain significance (VUS), precluding an efficient molecular diagnosis for many patients and families. Here we describe a recurrent RYR1 mutation previously classified as VUS, and we provide clinical, histological, and genetic data supporting its pathogenicity. The heterozygous c.12083C>T (p.Ser4028Leu) mutation was found in thirteen patients from nine unrelated congenital myopathy families with consistent clinical presentation, and either segregated with the disease in the dominant families or occurred de novo. The affected individuals essentially manifested neonatal or infancy-onset hypotonia, delayed motor milestones, and a benign disease course differing from classical RYR1-related muscle disorders. Muscle biopsies showed unspecific histological and ultrastructural findings, while RYR1-typical cores and internal nuclei were seen only in single patients. In conclusion, our data evidence the causality of the RYR1 c.12083C>T (p.Ser4028Leu) mutation in the development of an atypical congenital myopathy with gradually improving motor function over the first decades of life, and may direct molecular diagnosis for patients with comparable clinical presentation and unspecific histopathological features on the muscle biopsy.


Disease Progression , Muscle Hypotonia/diagnosis , Muscle Hypotonia/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Adolescent , Adult , Age of Onset , Aged , Child, Preschool , Female , Humans , Male , Middle Aged , Pedigree , Young Adult
18.
Acta Neuropathol Commun ; 9(1): 104, 2021 06 06.
Article En | MEDLINE | ID: mdl-34092257

The prevalence of congenital hydrocephalus has been estimated at 1.1 per 1000 infants when including cases diagnosed before 1 year of age after exclusion of neural tube defects. Classification criteria are based either on CSF dynamics, pathophysiological mechanisms or associated lesions. Whereas inherited syndromic hydrocephalus has been associated with more than 100 disease-causing genes, only four genes are currently known to be linked to congenital hydrocephalus either isolated or as a major clinical feature: L1CAM, AP1S2, MPDZ and CCDC88C. In the past 10 years, pathogenic variants in CCDC88C have been documented but the neuropathology remains virtually unknown. We report the neuropathology of two foetuses from one family harbouring two novel compound heterozygous pathogenic variants in the CCDC88C gene: a maternally inherited indel in exon 22, c.3807_3809delinsACCT;p.(Gly1270Profs*53) and a paternally inherited deletion of exon 23, c.3967-?_c.4112-?;p.(Leu1323Argfs*10). Medical termination of pregnancy was performed at 18 and 23 weeks of gestation for severe bilateral ventriculomegaly. In both fetuses, brain lesions consisted of multifocal atresia-forking along the aqueduct of Sylvius and the central canal of the medulla, periventricular neuronal heterotopias and choroid plexus hydrops. The second fetus also presented lumbar myelomeningocele, left diaphragmatic hernia and bilateral renal agenesis. CCDC88C encodes the protein DAPLE which contributes to ependymal cell planar polarity by inhibiting the non-canonical Wnt signaling pathway and interacts with MPDZ and PARD3. Interestingly, heterozygous variants in PARD3 result in neural tube defects by defective tight junction formation and polarization process of the neuroepithelium. Besides, during organ formation Wnt signalling is a prerequisite for planar cell polarity pathway activation, and mutations in planar cell polarity genes lead to heart, lung and kidney malformations. Hence, candidate variants in CCDC88C should be carefully considered whether brain lesions are isolated or associated with malformations suspected to result from disorders of planar cell polarity.


Fetal Diseases/genetics , Hydrocephalus/congenital , Hydrocephalus/genetics , Hydrocephalus/pathology , Intracellular Signaling Peptides and Proteins/genetics , Microfilament Proteins/genetics , Adult , Brain/pathology , Female , Fetus , Humans , Mutation , Pedigree , Pregnancy
19.
Hum Pathol ; 114: 99-109, 2021 08.
Article En | MEDLINE | ID: mdl-34019865

Targetable kinase fusions are extremely rare (<1%) in colorectal cancers (CRCs), making their diagnosis challenging and often underinvestigated. They have been shown particularly frequently among MSI-High, BRAF/KRAS/NRAS wild-type CRCs with MLH1 loss (MLH1loss MSI-High wild-type). We searched for NTRK1, NTRK2, NTRK3, ALK, ROS1, BRAF, RET, and NRG1 kinase fusions in CRCs using methods easy-to-implement in pathology laboratories: immunohistochemistry (IHC), fluorescent in situ hybridization (FISH), and fully automated real-time PCR targeted analyses. RNA-sequencing analyses were used for confirmation. Among 84 selected MLH1 deficient (IHC) CRCs cases, MLH1loss MSI-High wild-type CRCs consisted first in 19 cases after Idylla™ analyses and finally in 18 cases (21%) after RNA-sequencing (detection of one additional KRASG12D mutation). FISH (and when relevant, IHC) analyses concluded in 5 NTRK1, 3 NTRK3, 1 ALK, 2 BRAF, and 2 RET FISH positive tumors. ALK and NTRK1 rearranged tumors were IHC positive, but pan-TRK IHC was negative in the 3 NTRK3 FISH positive tumors. RNA-sequencing analyses confirmed 12 of 13 fusions with only one false positive RET FISH result. Finally, 12/18 (67%) of MLH1loss MSI-High wild-type CRCs contained targetable kinase fusions. Our study demonstrates the feasibility, but also the cost-effectiveness, of a multistep but rapid diagnostic strategy based on nonsequencing methods to identify rare and targetable kinase fusions in patients with advanced CRCs, as well as the high prevalence of these kinase fusions in MLH1loss MSI-High wild-type CRCs. Nevertheless, confirmatory RNA-sequencing analyses are necessary in case of low FISH positive nuclei percentage to rule out FISH false-positive results.


Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Gene Fusion , Genes, ras , Microsatellite Instability , Molecular Diagnostic Techniques , MutL Protein Homolog 1/genetics , Mutation , Proto-Oncogene Proteins B-raf/genetics , Adenocarcinoma/pathology , Aged , Aged, 80 and over , Automation, Laboratory , Colorectal Neoplasms/pathology , Cost-Benefit Analysis , DNA Mutational Analysis , False Positive Reactions , Feasibility Studies , Female , France , Genetic Predisposition to Disease , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Male , Middle Aged , Molecular Diagnostic Techniques/economics , Predictive Value of Tests , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sequence Analysis, RNA
20.
Appl Immunohistochem Mol Morphol ; 29(8): 626-634, 2021 09 01.
Article En | MEDLINE | ID: mdl-33758144

Tyrosine kinase inhibitors have revolutionized the treatment of patients with gastrointestinal stromal tumors (GISTs). Nevertheless, some GISTs do not contain any targetable KIT or PDGFRA mutations classically encountered in this field. Novel approved therapies targeting TRK chimeric proteins products of NTRK genes fusions consist in a promising approach to treat some patients with GISTs lacking any identified driver oncogenic mutation in KIT, PDGFRA or BRAF genes. Thus, an adequate testing strategy permitting to diagnose the rare NTRK-rearranged GISTs is required. In this work, we studied about the performances of pan-TRK immunohistochemistry (IHC) and NTRK1/2/3 fluorescent in situ hybridization in a series of 39 GISTs samples. Among 22 patients with GISTs lacking KIT or PDGFRA mutations, BRAFV600E IHC permitted to diagnose 2/22 (9%) BRAFV600E-mutated GISTs and, among the 20 KIT, PDGFRA, and BRAF wild type tumors, 1/20 (5%), NTRK3-rearranged tumor was diagnosed using NTRK3 fluorescent in situ hybridization. Pan-TRK IHC using EPR17341 and A7H6R clones was negative in this NTRK3-rearranged sample. Pan-TRK IHC was frequently positive in NTRK not rearranged tumors without (24 samples analyzed) or with (15 samples analyzed) KIT or PDGFRA mutations with major discrepancies between the 2 IHC clones (intraclass correlation coefficient of 0.3042). Given the new therapeutic opportunity offered by anti-TRK targeted therapies to treat patients with advanced cancers including GISTs, it is worth to extend molecular analysis to NTRK fusions testing in KIT, PDGFRA, and BRAF wild type GISTs. Pan-TRK IHC appears not relevant in this field but performing a simple NTRK3 fluorescent in situ hybridization test consists in a valuable approach to identify the rare NTRK3-rearranged GISTs treatable using anti-TRK therapies.


Gastrointestinal Stromal Tumors , Gene Rearrangement , In Situ Hybridization, Fluorescence , Neoplasm Proteins , Receptor, trkC , Adult , Aged , Aged, 80 and over , Gastrointestinal Neoplasms/enzymology , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/pathology , Gastrointestinal Stromal Tumors/diagnosis , Gastrointestinal Stromal Tumors/enzymology , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Humans , Immunohistochemistry , Male , Middle Aged , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Receptor, trkC/genetics , Receptor, trkC/metabolism
...